CHP Integration with Fluid Heating Processes in the Chemical and Refining Sectors

Distributed Generation Improvements in Industrial Applications

Presented to:

Jeff Zollar

ORNL Technical Project Officer

Presented by:

Energy Nexus Group, Carlsbad, CA Southern California Gas Company, Los Angeles, CA

October 23 - 25, 2001

CHP Integration with Fluid Heating in Chemical and Refining Sectors

Objective

- ★ Estimate the MW Potential of a Larger CHP Market as Compared to Traditional Steam CHP
- * Evaluate Technical Issues Including Temperature Requirements and Process Integration
- **★** Industrial Survey to Augment Field Findings
- ★ Recommendations to Overcome Economic and Technical Hurdles

Impact to CHP Opportunity in Chemical and Refining Sectors

- Based on Initial Analysis
- 18 GW of Remaining New Steam CHP Potential
 - ★ Based on previous studies conducted by Onsite Energy
- 40 GW of New Fluid Heating CHP Potential
 - ★ 30 GW in Refining based on fluid heating energy consumption
 - ★ 10 GW in Chemicals based on ½ of fluid heating energy consumption
- 58 GW of Total New CHP Potential

Scope of Work

PROGRESS	Task 1: Market Assessment
Completed	Profile SICs, processes, equipment types, temperatures
In progress	Estimate MW potential, develop economic criteria for U.S.
	Task 2: Technical Feasibility
	Detailed evaluation of a fluid heating application at a representative site
TBD	Investigate issues affecting feasibility of CHP integration
	Task 3: Industrial Survey
	* Recommendations and Discussion Paper
	★ Perform Industrial Survey
	Task 4: Final Report

Schedule

	Description	Ju	l-01	Aug	3-01	Sep	5-01	Oct	t-01	Nov	/-01	Dec	:-01	Jar	1-02	Feb)-0
TASK 1	FLUID HEATING CHP MARKET																
TASK 2	SITE EVALUATION OF FLUID HEATING CHP									7							
TASK 3	INDUSTRIAL SURVEY								\								
TASK 4	FINAL REPORT																

Progress to Date

- > Task 1: Fluid Heating Market
 - ★ Identified SICs, processes, fluid heating consumption
 - **★** Refining Fluid Heating Typically <1000F (product heating)
 - ★ Chemicals Fluid Heating Typically > 1000F (reactor temps)
 - ☆Assume ½ fluid heating consumption for CHP as combustion air preheat
 - **★** Evaluating Economic Criteria
- Task 2: Site Evaluation
 - **★** Performed site visit
 - **★** Evaluating site specific processes

CHP Opportunities in Refining and Chemicals

Fluid Heating Processes for Refining

Refining Processes	Fluid Heating CHP (GW)
Distillation	
Atmospheric	10
Vacuum	3
Coking	2
Catalytic Processes	
Reforming	8
Hydrocracking	1
Hydrotreating	4
Total	28

Example of Fluid Heating (Product Heating) for Refining Processes

Fluid Heating Processes for Chemicals

Chemical Processes	Fluid Heating CHP (GW)
Ethylene	5.50
Ammonia	1.9
Carbon Black	0.57
Methanol	0.48
Vinyl Chloride	0.22
Styrene	0.24
Terephlhalic Acid (TPA)	0.24
Benzene, Toulene, Xylenes	0.18
Propylene Oxide	0.08
Total	9.41

Example of Fluid Heating (Combustion Air) for Chemical Processes

KEITH DAVIDSON

President

701 Palomar Airport Rd., Suite 200 Carlsbad, California 92009 Tel. (760) 931-5820, X112 • Fax. (760) 931-5344

Direct (760) 710-1712 • Email: kdavidson@energynexusgroup.com